If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6(t^2+t-20)=0
We multiply parentheses
6t^2+6t-120=0
a = 6; b = 6; c = -120;
Δ = b2-4ac
Δ = 62-4·6·(-120)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-54}{2*6}=\frac{-60}{12} =-5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+54}{2*6}=\frac{48}{12} =4 $
| 2.6x-14=-27 | | 9x+15+6x=8 | | z/5+z/3=10 | | r=-12=14 | | 3x+0·3=3·3 | | 7x=7x+10 | | m/3+44=12 | | 2^x2=8.4^x | | 10-10x=45 | | 1/3(2-z)=12 | | {3w+5}{2}=4w+7 | | 9.47=-5.53+(-3t) | | 10-10x=45x | | x/{-2}=1.4 | | 5z/13=-5 | | 2x-13=7+4x | | -0.1s/7=0.4 | | 25s=5s+10s^2 | | -(-3p-3)=2(4p+2)-1 | | -p/10=-0.1 | | z/2.5=-4 | | 4g+4(-6+5g)=1+-1g | | 44=2(3x-8) | | -3-3(8x-3)=-3(1+8x) | | 20=3(t-3)+4 | | 7(-10+2x)=-238 | | 28+n=-4(-5n-7) | | 15t-5(t+1)=15 | | 165÷8.25=x | | -2=-b+8=10 | | 31+8x=-3(1+8x) | | -2x(10+6x)=-128 |